Spatial synchrony propagates through a forest food web via consumer-resource interactions.

نویسندگان

  • Kyle J Haynes
  • Andrew M Liebhold
  • Todd M Fearer
  • Guiming Wang
  • Gary W Norman
  • Derek M Johnson
چکیده

In many study systems, populations fluctuate synchronously across large regions. Several mechanisms have been advanced to explain this, but their importance in nature is often uncertain. Theoretical studies suggest that spatial synchrony initiated in one species through Moran effects may propagate among trophically linked species, but evidence for this in nature is lacking. By applying the nonparametric spatial correlation function to time series data, we discover that densities of the gypsy moth, the moth's chief predator (the white-footed mouse), and the mouse's winter food source (red oak acorns) fluctuate synchronously over similar distances (approximately1000 km) and with similar levels of synchrony. In addition, we investigate the importance of consumer-resource interactions in propagating synchrony among species using an empirically informed simulation model of interactions between acorns, the white-footed mouse, the gypsy moth, and a viral pathogen of the gypsy moth. Our results reveal that regional stochasticity acting directly on populations of the mouse, moth, or pathogen likely has little effect on levels of the synchrony displayed by these species. In contrast, synchrony in mast seeding can propagate across trophic levels, thus explaining observed levels of synchrony in both white-footed mouse and gypsy moth populations. This work suggests that the transfer of synchrony among trophically linked species may be a major factor causing interspecific synchrony.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trophic Shifts of a Generalist Consumer in Response to Resource Pulses

Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among va...

متن کامل

Environmental fluctuations can stabilize food web dynamics by increasing synchrony.

Natural food webs are species-rich, but classical theory suggests that they should be unstable and extinction-prone. Asynchronous fluctuations in the densities of competing consumers can stabilize food web dynamics in constant environments. However, environmental fluctuations often synchronize dynamics in nature. Using the same 'diamond-shape' food web model first used to demonstrate the stabil...

متن کامل

Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.

Environmental temperature has systematic effects on rates of species interactions, primarily through its influence on organismal physiology. We present a mechanistic model for the thermal response of consumer-resource interactions. We focus on how temperature affects species interactions via key traits - body velocity, detection distance, search rate and handling time - that underlie per capita...

متن کامل

Synchrony and stability of food webs in metacommunities.

Synchrony has fundamental but conflicting implications for the persistence and stability of food webs at local and regional scales. In a constant environment, compensatory dynamics between species can maintain food web stability, but factors that synchronize population fluctuations within and between communities are expected to be destabilizing. We studied the dynamics of a food web in a metaco...

متن کامل

A metric for quantifying the oscillatory tendency of consumer-resource interactions.

The oscillatory tendency of consumer-resource interactions is a key determinant of food-web persistence. Here, we develop a metric for quantifying oscillatory tendency that scales the positive feedback effects of saturating functional responses with the negative feedback effects of self-limitation. We use this metric to predict the oscillatory tendency of a pairwise interaction, tritrophic chai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 90 11  شماره 

صفحات  -

تاریخ انتشار 2009